Abstract

Necroptosis/regulated necrosis is a caspase-independent, but receptor interacting protein kinase (RIPK)-dependent form of cell death. In previous studies, neoalbaconol (NA), a constituent extracted from Albatrellus confluens, was demonstrated to induce necroptosis in some cancer cell lines. The molecular mechanism of NA-induced necroptosis is described in this research study. We determined that NA-induced cell death is partly dependent on tumor necrosis factor α (TNFα) feed-forward signaling. More importantly, NA abolished the ubiquitination of RIPK1 by down-regulating E3 ubiquitin ligases, cellular inhibitors of apoptosis protein 1/2 (cIAP1/2) and TNFα receptor-associated factors (TRAFs). The suppression of RIPK1 ubiquitination induced the activation of the non-canonical nuclear factor-κB (NF-κB) pathway and stimulated the transcription of TNFα. Moreover, we also found that NA caused RIPK3-mediated reactive oxygen species (ROS) production and contribution to cell death. Taken together, these results suggested that two distinct mechanisms are involved in NA-induced necroptosis and include RIPK1/NF-κB-dependent expression of TNFα and RIPK3-dependent generation of ROS.

Highlights

  • Regulated cell death, a physiologic process for elimination of damaged cells, is critically important in normal development and disease pathogenesis

  • We discovered that NA triggers necroptosis by promoting autocrine secretion of tumor necrosis factor α (TNFα) through the regulation of the receptor interacting protein kinase (RIPK)/nuclear factor-κB (NF-κB) signaling pathway and RIPK3-dependent reactive oxygen species (ROS) production

  • NA induces the proteasomal degradation of cIAPs that leads to the de-ubiquitination of RIPK1 which activating necroptosome to initiate necroptosis; loss of cIAPs facilitates the stabilization of NF-κB inducing kinase (NIK), promoting IKKα/IKKα activation and the processing of p100 to p52 to activate non-canonical NF-κB pathway

Read more

Summary

Introduction

A physiologic process for elimination of damaged cells, is critically important in normal development and disease pathogenesis. Multiple mechanisms of regulated cell death have been identified that function in distinct manners: apoptosis, autophagic cell death, and necrosis. Necroptosis is a form of regulated necrosis that is RIPK1/3-dependent under apoptotic deficient conditions [1]. Research results showed that a growing list of anticancer agents, such as etoposide [4], Smac mimetic [5, 6] and shikonin [7], can initiate necroptosis to kill cancer cells. These findings raised the possibility that necroptosis might be considered as an alternative choice for cancer treatment

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call