Abstract

Activated B-cell diffuse large B-cell lymphoma (ABC-DLBCL) is an aggressive, poorly chemoresponsive lymphoid malignancy characterized by constitutive canonical NF-κB activity that promotes lymphomagenesis and chemotherapy resistance via overexpression of antiapoptotic NF-κB target genes. Inhibition of the canonical NF-κB pathway may therefore have therapeutic relevance in ABC-DLBCL. Here, we set out to determine whether dogs with spontaneous DLBCL have comparative aberrant constitutive NF-κB activity and to determine the therapeutic relevance of NF-κB inhibition in dogs with relapsed, resistant DLBCL. Canonical NF-κB activity was evaluated by electrophoretic mobility shift assays and immunoblot analyses, and NF-κB target gene expression was measured by quantitative real time PCR. Primary malignant canine B lymphocytes were treated with the selective IKK complex inhibitor NF-κB essential modulator-binding domain (NBD) peptide and evaluated for NF-κB activity and apoptosis. NBD peptide was administered intranodally to dogs with relapsed B-cell lymphoma and NF-κB target gene expression and tumor burden were evaluated pre- and post-treatment. Constitutive canonical NF-κB activity and increased NF-κB target gene expression were detected in primary DLBCL tissue. NBD peptide inhibited this activity and induced apoptosis of primary malignant B cells in vitro. Intratumoral injections of NBD peptide to dogs with relapsed DLBCL inhibited NF-κB target gene expression and reduced tumor burden. This work shows that dogs with spontaneous DLBCL represent a clinically relevant, spontaneous, large animal model for human ABC-DLBCL and shows the therapeutic relevance of NF-κB inhibition in the treatment of ABC-DLBCL. These results have important translational relevance for ABC-DLBCL treatment in human patients.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call