Abstract
We introduce and apply a variant of a dynamic self-consistent field simulation in two dimensions to predict the structure of interfaces between a nematic and an amorphous polymer compatibilized by a diblock copolymer. First, we investigate the effect of the nematic order on the polymer polymer interface without compatibilizer. Then we include the compatibilizer and consider two interfacial setups previously used in experiments, i.e., the bilayer setup and the trilayer setup. In the bilayer setup the diblock copolymer is mixed into the amorphous homopolymer and migrates to the interface in the course of the simulation forming a layered structure. We compare the amount of copolymer at the interface for initial concentrations of the copolymer below and above the critical micelle concentration. In the trilayer setup the initial thickness of the diblock copolymer is varied. The resulting interfacial morphology evolves in the competition between the lamellar structure induced by the interface and a micellar structure, which is intrinsic to the copolymer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.