Abstract
Nel-like molecule type 1 (Nell-1) is a secreted protein that plays an important role in osteoinduction in multiple animal models. A previous study has suggested the anti-inflammatory effect of Nell-1 on bone inflammation inhibition. However, its role in pulpitis has not been investigated. The present study aims to explore the effect of human recombinant Nell-1 (Nell-1) on rat pulp inflammation response, and its effect on lipopolysaccharide-induced inflammation in human dental pulp cells and its related intracellular signaling pathways. 30 Wistar rats with healthy non-carious maxillary first molars were chosen, Nell-1 was absorbed onto a sterile collagen sponge and capped onto exposed pulps. The expression of IL-6 and IL-8 were detected by immunohistochemical staining. Human dental pulp cells (hDPCs) were isolated from healthy extracted premolars and third molars. hDPCs were co-cultured with Escherichia coli lipopolysaccharide (LPS), Nell-1 protein, and mitogen-activated protein kinase (MAPK) inhibitors. The expression of pro-inflammatory cytokines and chemokines, such as IL-6 and IL-8, was examined via quantitative real-time PCR and enzyme-linked immunosorbent assay. The results showed that Nell-1 inhibited the inflammatory response of rat pulp. LPS treatment contributed to the expression of inflammatory factors in hDPCs, whereas Nell-1 obviously suppressed the LPS-induced inflammation. p38 MAPK and extracellular signal-regulated kinase (ERK) MAPK inhibitors attenuated the anti-inflammatory effect of hrNell-1, whereas the c-Jun N-terminal kinases (JNK) MAPK inhibitor exerted minimal effect. Therefore Nell-1 could inhibit LPS-induced inflammation in human dental pulp cells, and this effect may be mediated by p38 and ERK MAPK signaling pathways, but not JNK MAPK signaling pathway.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.