Abstract

Graph convolutional networks (GCNs) are widely believed to perform well in the graph node classification task, and homophily assumption plays a core rule in the design of previous GCNs. However, some recent advances on this area have pointed out that homophily may not be a necessity for GCNs. For deeper analysis of the critical factor affecting the performance of GCNs, we first propose a metric, namely, neighborhood class consistency (NCC), to quantitatively characterize the neighborhood patterns of graph datasets. Experiments surprisingly illustrate that our NCC is a better indicator, in comparison to the widely used homophily metrics, to estimate GCN performance for node classification. Furthermore, we propose a topology augmentation graph convolutional network (TA-GCN) framework under the guidance of the NCC metric, which simultaneously learns an augmented graph topology with higher NCC score and a node classifier based on the augmented graph topology. Extensive experiments on six public benchmarks clearly show that the proposed TA-GCN derives ideal topology with higher NCC score given the original graph topology and raw features, and it achieves excellent performance for semi-supervised node classification in comparison to several state-of-the-art (SOTA) baseline algorithms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.