Abstract

In this study, we investigated how neighbors (i.e., competitors) altered resistance phenotypes, namely plant size and levels of secondary compounds (iridoid glycosides), of individual plants and specifically tested whether neighbor identity mattered. We conducted a greenhouse experiment with Plantago lanceolata and Plantago major (Plantaginaceae) in which each species served as focal plants as well as neighbors in a factorial design. In addition, we harvested plants six and nine weeks after transplantation to test whether effects changed as plants grew. In both species, competition reduced plant size, and this effect increased over time. Plantago lanceolata neighbors suppressed growth of both focal plant species more than P. major neighbors. Effects of competition on levels of secondary compounds were more complex. Concentrations of iridoid glycosides were increased by competition in both species at harvest one. By the second harvest, an effect of competition on iridoid glycosides was found only in P. major. Neighbor identity influenced levels of iridoid glycosides in P. lanceolata at harvest one; concentrations were higher in plants grown with P. lanceolata neighbors than in plants grown with P. major neighbors. We also tested whether there was a trade-off between growth (biomass) and defense (levels of iridoid glycosides). Biomass and iridoid glycoside content were significantly correlated only in plants grown with competition and harvested at nine weeks, and this relationship was positive in both species, indicating that there was no trade-off between growth and defense. This study suggests that neighbor identity could play an important role in interspecific interactions, including the interactions of plants with other trophic levels.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call