Abstract
Let G = (V,E) be a graph and ϕ: V ∪E → {1, 2, · · ·, k} be a total-k-coloring of G. Let f(v)(S(v)) denote the sum(set) of the color of vertex v and the colors of the edges incident with v. The total coloring ϕ is called neighbor sum distinguishing if (f(u) ≠ f(v)) for each edge uv ∈ E(G). We say that ϕ is neighbor set distinguishing or adjacent vertex distinguishing if S(u) ≠ S(v) for each edge uv ∈ E(G). For both problems, we have conjectures that such colorings exist for any graph G if k ≥ Δ(G) + 3. The maximum average degree of G is the maximum of the average degree of its non-empty subgraphs, which is denoted by mad (G). In this paper, by using the Combinatorial Nullstellensatz and the discharging method, we prove that these two conjectures hold for sparse graphs in their list versions. More precisely, we prove that every graph G with maximum degree Δ(G) and maximum average degree mad(G) has chΣ″(G) ≤ Δ(G) + 3 (where chΣ″(G) is the neighbor sum distinguishing total choice number of G) if there exists a pair \((k,m) \in \{ (6,4),(5,\tfrac{{18}} {5}),(4,\tfrac{{16}} {5})\}\) such that Δ(G) ≥ k and mad (G) <m.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Acta Mathematicae Applicatae Sinica, English Series
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.