Abstract
The celebrated Meyer-Miller mapping model has been a useful approach for generating practical trajectory-based nonadiabatic dynamics methods. It is generally assumed that the zero-point-energy (ZPE) parameter is positive. The constraint implied in the conventional Meyer-Miller mapping Hamiltonian for an F-electronic-state system actually requires γ∈(-1/F, ∞) for the ZPE parameter for each electronic degree of freedom. Both negative and positive values are possible for such a parameter. We first establish a rigorous formulation to construct exact mapping models in the Cartesian phase space when the constraint is applied. When nuclear dynamics is approximated by the linearized semiclassical initial value representation, a negative ZPE parameter could lead to reasonably good performance in describing dynamic behaviors in typical spin-boson models for condensed-phase two-state systems, even at challenging zero temperature.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have