Abstract
Biochars were studied for their impacts on the dissipation and vegetable uptake of polycyclic aromatic hydrocarbons (PAHs) in an agricultural soil. The health risks of PAHs taken up by vegetables were assessed by growing Chinese cabbage in both unamended soil and biochar-amended soils. In the unamended soil, the total 16 PAHs (Σ16PAHs) content decreased by 77.38% after planting the vegetable. The dissipation percentages of low-molecular-weight PAHs (LMW-PAHs), medium-molecular-weight PAHs (MMW-PAHs), and high-molecular-weight PAHs (HMW-PAHs) were 82.37%, 72.65%, and 68.63%, respectively. A significant negative correlation was determined between the dissipation percentages of PAHs in soil and the logKow of PAHs (p < 0.01), indicating that the affinity of PAHs for soil particles was one of an important limiting factors on the dissipation of PAHs. The uptake of PAHs by plant was significantly reduced with the increase in the molecular weight of the PAHs (76.55% for LWM-PAHs, 17.13% for MMW-PAHs, and 6.05% for HMW-PAHs). Addition of biochars to the soil decreased the dissipation of Σ16PAHs (73.59–77.01%), mostly due to a decrease in the dissipation of LMW-PAHs and MMW-PAHs. This finding was due to the immobilization of LMW-PAHs and MMW-PAHs within the biochar micropores. A marked reduction of Proteobacteria in biochar-amended soils also resulted in the decreased biodegradation of PAHs. Four of six biochars significantly increased the concentrations of Σ16PAHs in plant by 30.10–74.22%. Generally, biochars significantly increased the uptake of LMW-PAHs by plant but had little influence on the plant uptake of MMW-PAHs and HMW-PAHs. Three of six biochars notably increased the incremental lifetime cancer risk values based on the exposure of PAHs by vegetable consumption.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.