Abstract

The oxygen isotope effect in PrBaMn216-18 O5.97 manganite with an ordered cation arrangement is studied. The field dependences of magnetic susceptibility and magnetization are measured in the temperature range 100–270 K and magnetic fields up to 32 T. A significant increase in the temperature of the spin-reorientation antiferromagnet–ferromagnet phase transition is detected in samples enriched in heavy oxygen 18O (negative isotope effect). The transition temperature and the isotope effect depend strongly on the magnetic field. An H–T phase diagram is plotted for samples with various isotope compositions. An analysis of the experimental results demonstrates that the detected negative isotope effect and the giant positive isotope effect revealed earlier in doped manganites have the same nature. The mechanisms of appearance of isotope effects are discussed in terms of the double exchange model under a polaron narrowing of the free carrier band.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call