Abstract

The sodium extraction/insertion in layered transition-metal oxide (TMO) cathode materials are typically accompanied by slab sliding and lattice changes, leading to microstructure destruction and capacity decay. Herein, negative lattice expansion is observed in an O3 type Ni-based layered cathode of Na0.9 Ni0.32 Zn0.08 Fe0.1 Mn0.3 Ti0.2 O2 upon Na+ extraction. It is attributed to the weak Zn2+ -O2- orbital hybridization and increased electron density of the surrounding oxygen for reinforced interlayer O-O repulsive force. This enables gliding of TMO slabs for the intergrowth phase transition of P3→OP2 to alleviate lattice strain with moderate lattice shrinkage, which exhibits general interslab spacings and volume changes as low as 2.4 % and 1.9 %, respectively. The strong Ti-O bonds accommodate the internal distortion of TMO6 octahedra due to the flexibility of TiO6 octahedra during cycling. These endow a high specific capacity of 144.9 mAh g-1 and excellent cycling performance of pouch-type sodium-ion batteries with 93 % capacity retention after 3600 cycles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.