Abstract
Microbe/pathogen-associated molecular patterns (MAMPs/PAMPs) often induce rises in cytosolic free Ca(2+) concentration ([Ca(2+)](cyt)) and protein phosphorylation. Though they are postulated to play pivotal roles in plant innate immunity, their molecular links and the regulatory mechanisms remain largely unknown. To investigate the regulatory mechanisms for MAMP-induced Ca(2+) mobilization, we have established a transgenic rice (Oryza sativa) cell line stably expressing apoaequorin, and characterized the interrelationship among MAMP-induced changes in [Ca(2+)](cyt), production of reactive oxygen species (ROS) and protein phosphorylation. Oligosaccharide and sphingolipid MAMPs induced Ca(2+) transients mainly due to plasma membrane Ca(2+) influx, which were dramatically suppressed by a protein phosphatase inhibitor, calyculin A (CA). Hydrogen peroxide and hypo-osmotic shock triggered similar [Ca(2+)](cyt) elevations, which were not affected by CA. MAMP-induced protein phosphorylation, which is promoted by CA, has been shown to be required for ROS production and MAPK activation, while it negatively regulates MAMPs-induced Ca(2+) mobilization and may play a crucial role in temporal regulation of [Ca(2+)](cyt) signature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.