Abstract

Stimulating effector T-cells (Teffs) without inducing regulatory T-cells (Tregs) has been the primary goal of IL-2-based therapies for cancer. Recently, modified IL-2 designed for differential T-cell expansion for the treatment of cancer has failed in the clinic. We propose that treatments based on exogenous administrations of modified IL-2 are inherently undermined by a negative feedback loop, caused by IL-2 secreted endogenously from activated effector T-cells. This endogenous IL-2 secretion subsequentially induces Treg expansion and inhibits the immune response that is essential for cancer clearance. Here, we demonstrate that treatments utilizing exogenous modified IL-2 indeed induce Treg expansion. To circumvent this negative feedback, we computationally designed a novel monoclonal humanized antibody (AU-007) that binds human IL-2 with pM affinity at a predefined epitope and completely blocks IL-2 binding to CD25 that is highly expressed on Tregs, without hindering IL-2 binding to CD122/CD132 dimer receptor expressed over effector cells. This epitope-specific, high-affinity antibody controls endogenous IL-2 and prevents it from expanding Tregs while allowing it to expand Teffs. We show that controlling endogenous IL-2 using AU-007 abrogates the negative feedback loop and replaces it with a positive feedback loop that enhances the expansion of NK cells and Teffs, an effect considered favorable for cancer immunotherapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call