Abstract
The temporal evolution of the electron velocity-distribution function(EVDF), the concentration, mean energy, and the drift velocity of theelectrons is studied on a kinetic basis in a weakly ionized Ar/F2mixture plasma under conditions when the electron concentration temporallydecreases as a result of the electron attachment to fluoride molecules. Usingan appropriate relaxation model, the time-dependent electron Boltzmannequation was solved in multiterm and two-term approximations of the velocitydistribution function. The multiterm results confirmed predictions on theoccurrence of negative electron mobilities in such a decaying Ar/F2plasma, which were made in a former study using the conventional two-termapproximation. The investigations particularly showed that this approximationgives almost accurate results for the EVDF and related electron swarm parametersexcept for in the very beginning of the relaxation process. It has been furthershown that for a certain range of the reduced electric field strength, thedrift velocity becomes negative in the process of temporal evolution and remainsnegative even when approaching the hydrodynamic stage of the electronswarm. In addition, the role played by the back heating from the gas byelastic collisions on the EVDF formation is studied and various comparisonswith corresponding Monte Carlo results are performed.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.