Abstract
Mitochondrial oxidative phosphorylation (OXPHOS) is essential for ATP production to maintain sperm linear motility during migration from the uterus to the oviduct. However, ROS are generated as by-products of OXPHOS, causing stress and damaging the sperm quality. This study aimed to clarify the ROS targets in sperm mitochondria that decrease linear motility and to investigate whether mitochondria-target antioxidants (PQQ and CoQ10) affect mitochondrial activity and sperm motility. Sperm linear motility pattern, ATP production, and mitochondrial activity were decreased with increasing ROS levels during incubation in the low-glucose medium. However, sperm motility patterns and ROS levels were not significantly changed in the high-glucose medium. Moreover, the gene expression system (mt-DNA, mitochondrial transcription factor-A (TFAM) and RNA polymerase (POLRMT)) in sperm mitochondria was damaged during incubation in the low-glucose medium. Interestingly, PQQ treatment increased the mt-DNA stability and decreased the damage to TFAM and POLRMT, which resulted in high expression of mitochondrial genes. Furthermore, the antioxidants increased mitochondrial activity and maintained sperm linear motility under the low glucose condition. These results revealed that both ATP production and the mitochondrial transcription system are damaged with increasing ROS levels in sperm that show a linear motility pattern. Treatment with antioxidants, such as PQQ and CoQ10, is beneficial tool to maintain sperm linear motility.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.