Abstract

Microplastics exposure could be detrimental to marine organisms especially under high concentrations. However, few studies have considered the multiphasic nature of marine invertebrates' life history and investigated the impact of experiencing microplastics during early development on post-metamorphic stages (legacy effect). Many planktonic larvae can feed selectively and it is unclear whether such selectivity could modulate the impact of algal food-sized microplastic. In this two-stage experiment, veligers of Crepidula onyx were first exposed to additions of algae-sized micro-polystyrene (micro-PS) beads at different concentrations, including ones that were comparable their algal diet. These additions were then either halted or continued after settlement. At environmentally relevant concentration (ten 2-μm microplastic beads ml-1), larval and juvenile C.onyx was not affected. At higher concentrations, these micro-PS fed larvae consumed a similar amount of algae compared to those in control but grew relatively slower than those in the control suggesting that ingestion and/or removal of microplastic was/were energetically costly. These larvae also settled earlier at a smaller size compared to the control, which could negatively affect post-settlement success. Juvenile C.onyx receiving continuous micro-PS addition had slower growth rates. Individuals only exposed to micro-PS during their larval stage continued to have slower growth rates than those in the control even if micro-PS had been absent in their surroundings for 65 days highlighting a legacy effect of microplastic exposure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call