Abstract

In this work, the negative differential thermal resistance effect has been proposed in a solid-liquid-solid sandwiched system with a nanostructured cold surface. Non-equilibrium molecular dynamics simulations demonstrate that the heat flux in the present sandwiched system increases with the temperature bias for low temperature bias, while for high temperature bias, the heat flux decreases counter-intuitively with increasing temperature bias. Based on the analysis of the interfacial thermal resistance and the density depletion length at the solid-liquid interface, the negative differential thermal resistance effect at high temperature bias is attributed to the suppressed solid-liquid interfacial thermal conductance with decreasing temperature. In addition, it is found that the negative differential thermal resistance effect can be tuned by the size of the nanostructure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.