Abstract
Negative differential resistance (NDR) was recently observed in carbon nanotube junctions just before breaking and hypothesized to arise from the formation of monatomic carbon wires in the junction. Motivated by these results, a first-principles scattering-state approach, based on density functional theory, is used to study the transport properties of carbon chains covalently connecting metallic carbon nanotube leads at finite bias. The I- V characteristics of short carbon chains are predicted to exhibit even-odd behavior, and NDR is found for both even and odd chain junctions in our calculations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.