Abstract

We describe the history, guiding mechanism, recent advances, applications, and future prospects for hollow-core negative curvature fibers. We first review one-dimensional slab waveguides, two-dimensional annular core fibers, and negative curvature tube lattice fibers to illustrate the inhibited coupling guiding mechanism. Antiresonance in the glass at the core boundary and a wavenumber mismatch between the core and cladding modes inhibit coupling between the modes and have led to remarkably low loss in negative curvature fibers. We also summarize recent advances in negative curvature fibers that improve the performance of the fibers, including negative curvature that increases confinement, gaps between tubes that increase confinement and bandwidth, additional tubes that decrease mode coupling, tube structures that suppress higher-order modes, nested tubes that increase guidance, and tube parameters that decrease bend loss. Recent applications of negative curvature fibers are also presented, including mid-infrared fiber lasers, micromachining, and surgical procedures. At the end, we discuss the future prospects for negative curvature fibers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call