Abstract

Optical losses of chalcogenide negative curvature hollow-core fibers with hybrid cladding elements were numerically investigated in this study. Microstructured cladding formed by the combination of tubular and elliptical elements was designed for low-loss operation in the mid-infrared spectrum. A confinement loss value of 0.287 dB/km was calculated for the proposed ellipse-nested tubular negative curvature fiber with optimized design parameters at 10.6 µm. Achieved confinement losses with the proposed design are several orders of magnitude lower than the tubular/elliptical negative curvature fibers in the targeted spectrum. The effect of the material absorption to the total fiber losses was also investigated along with the confinement losses. Suppression on the higher-order modes by the proposed fiber was numerically observed. The negative curvature fibers are promising for the low-loss guidance of CO2 lasers that are widely used for various applications spanning from material processing to surgery.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.