Abstract

Abstract Corona discharge from a fine water droplet always involves deformation of the droplet shape or Taylor-cone formation, emission of fine water jets or disruption of droplet. Therefore, corona discharge from a water droplet always manifests complicated aspects. In addition, disruption of Taylor cone simultaneously affects not only discharge current but also motion of water droplet. To confirm corona discharge phenomena from a water droplet protruded from a tip of a metal capillary tube with a diameter of 1 mm, negative corona discharge was investigated by using a water droplet located at a tip of grounded rod electrode facing a ring electrode with positive dc voltage superimposed by ac one. Since the droplet has inherent resonant vibrating frequency defined by the size or volume, the volume of water droplet was adjusted at 20 nL where the corresponding resonant frequency was 500 Hz. The period of the event of successive corona discharge is exactly consistent with resonant frequency defined by the size of the water droplet. As a result, corona pulse trains with a definite duration appeared intermittently corresponding to its resonant vibration. When dc voltage superimposed by ac voltage with resonant frequency of 500 Hz was applied to the water droplet, corona pulse trains appeared at the period corresponding to the frequency. The maximum value of corona current reasonably increased with the applied voltage. Even when the frequency of ac field superimposed on dc field was varied from the resonant frequency, corona pulse trains occur corresponding to not only the superimposed field frequency but also resonant frequency.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.