Abstract

The two-dimensional (2-D) dynamic cellular automata (CA) model for photoresist etching simulation has been originally extended to simulate the negative chemical amplification process to further investigate its possibility to simulate monolithic simulation of lithography processes. Simulation profiles of the 2-D dynamic CA model show a good agreement with experiment profiles, and the computation time of negative chemical amplification process using the 2-D dynamic CA model is greatly reduced compared with that of the 2-D static CA model. The results indicate that the 2-D dynamic CA model is accurate, fast, and capable of being integrated into monolithic lithography process simulation. This is identified to be greatly useful to increasingly needed monolithic simulation of various lithography processes for integrated circuits (IC), Microelectromechanical Systems (MEMS), and even future Nanoelectromechanical Systems (NEMS).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call