Abstract
Negative gate bias is used in some applications for faster switching off the n-channel MOS devices. It is shown in this study that NBT stress-related instability in commercial n-channel power VDMOSFETs could be actually more serious than in corresponding p-channel devices. NBT stress is found to create equal V T shifts in both device types, whereas the subsequent positive bias annealing results in more serious overall V T instability in n-channel devices. The changes in the densities of stress-induced interface traps in two device types are equal as well, but significant amounts of NBT stress-induced border traps are only found in n-channel devices. All the results are discussed in terms of hydrogen reaction and diffusion model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.