Abstract

Research Highlights: Pre-programmed cell death in old Aleppo pine needles leads to low moisture contents in the forest canopy in July, the time when fire activity nears its peak in the Western Mediterranean Basin. Here, we show, for the first time, that such needle senescence may increase fire behavior and thus is a potential mechanism explaining why the bulk of the annual burned area in the region occurs in early summer. Background and Objectives: The brunt of the fire season in the Western Mediterranean Basin occurs at the beginning of July, when live fuel moisture content is near its maximum. Here, we test whether a potential explanation to this conundrum lies in Aleppo pine needle senescence, a result of pre-programmed cell death in 3-years-old needles, which typically occurs in the weeks preceding the peak in the burned area. Our objective was to simulate the effects of needle senescence on fire behavior. Materials and Methods: We simulated the effects of needle senescence on canopy moisture and structure. Fire behavior was simulated across different phenological scenarios and for two highly contrasting Aleppo pine stand structures, a forest, and a shrubland. Wildfire behavior simulations were done with BehavePlus6 across a wide range of wind speeds and of dead fine surface fuel moistures. Results: The transition from surface to passive crown fire occurred at lower wind speeds under simulated needle senescence in the forest and in the shrubland. Transitions to active crown fire only occurred in the shrubland under needle senescence. Maximum fire intensity and severity were always recorded in the needle senescence scenario. Conclusions: Aleppo pine needle senescence may enhance the probability of crown fire development at the onset of the fire season, and it could partly explain the concentration of fire activity in early July in the Western Mediterranean Basin.

Highlights

  • Pine-dominated ecosystems are one of the major landscape types in the Mediterranean Basin, where they cover 25% of the forest surface [1]

  • Our results suggest that Aleppo pine needle senescence significantly affects potential crown fire behavior

  • For the first time to our knowledge, of enhanced crown fire behavior in Aleppo pine driven by needle senescence through altered canopy structure and foliage in a period that is coincidental with the brunt of the fire season

Read more

Summary

Introduction

Pine-dominated ecosystems are one of the major landscape types in the Mediterranean Basin, where they cover 25% of the forest surface [1]. One of the most abundant and widespread pine species in the Mediterranean Basin is Pinus halepensis Mill. (Aleppo pine), which covers 6.8 Mha, at low altitudes (

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.