Abstract

Nitric oxide (NO) is a highly reactive free radical with profound tumoricidal activity, produced by both macrophages and tumor cells. While it has been postulated that necrotic tumor cells can augment macrophage anti-tumor action, we investigated the effect of tumor cell necrosis on NO synthesis and viability of L929 fibrosarcoma and C6 astrocytoma cell lines. The presence of necrotic tumor cells dose-dependently reduced NO production in IFN-γ stimulated L929 cells, and rescued them from NO-dependent autotoxicity. This effect was mediated through soluble products, since it was completely preserved after blocking the contact between the necrotic and live cells. On the other hand, apoptotic tumor cells were unable to suppress IFN-γ-triggered NO release and subsequent decrease of cell respiration in L929 cultures. Similar results were obtained with C6 astrocytoma cell line. This down-regulation of NO synthesis in response to necrotic cell products was not specific for tumor cell lines, since necrotic tumor cells markedly suppressed NO production in cytokine-stimulated primary fibroblasts and astrocytes. In contrast, both murine and rat peritoneal macrophages readily increased their basal or IFN-γ-induced NO production when incubated with necrotic tumor cells. Taken together, these results suggest that tumor cell necrosis might promote or restrict tumor growth through suppression or enhancement of NO synthesis in tumor cells and macrophages, respectively, with net effect presumably depending on the extent of macrophage infiltration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.