Abstract

ABSTRACTThe role of viscoelasticity in determining the extent of necking of a web of molten polymer extruded in an isothermal steady state extrusion film casting (EFC) process is considered. Following a brief review of experimental and theoretical efforts on this problem, analytical and numerical solutions to a well-established model for extrusion film casting using the Maxwell constitutive equation is presented. The extent of film necking was found to either increase or decrease with draw ratio (DR) depending on the Deborah number (De). The locus of points on the draw ratio-Deborah number diagram at which the draw ratio dependence of the necking width inverts was calculated and compared with the locus that separates the unattainable regime from the experimentally accessible regime. Predicted trends were found to be in qualitative agreement with experimental data for various polyethylene grades.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.