Abstract

This paper presents new results on dynamic neck evolution in steel bars of varying diameters. Dynamic tensile tests were carried out in a Kolsky apparatus using cylindrical steel specimens with various cross-section diameters ranging from 1.5mm to 4mm. A high speed digital camera was used to record the deformation of the specimen during the loading process. Video recording of the tests enabled accurate experimental measurements of the necking evolution, specifically its growth rate as a function of the diameter. The experiments show that increasing the specimen cross-section slows down the neck development. This behavior has been further investigated using two different kinds of numerical calculations: (1) axisymmetric finite element simulations and (2) one-dimensional finite difference computations. While the finite difference model only considers the normal stress along the longitudinal direction of the bar, the finite element model does not entail any simplification on the stress state of the specimen during the loading process. In agreement with the experiments, the finite element calculations show a decrease of the necking growth rate with the increase in the cross-section of the sample. On the contrary, the damping effect of the specimen cross-section on the necking evolution is not captured by the finite difference computations. We postulate that this result comes from the one-dimensional nature of the finite difference model. This work uncovers, by means of combined experiments and modelling, the key role played by stress multiaxiality in the growth rate of dynamic necks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call