Abstract

The present study was to assess whether nebivolol could activate beta(3)-adrenergic receptors (ARs) in the human heart. Nebivolol is a third-generation beta-blocker used in the treatment of heart failure. It associates selective beta(1)-adrenergic antagonist properties with endothelial and nitric oxide (NO)-dependent vasodilation. Several studies reported that this vasodilation could result from an activation of beta(3)-ARs, but no data are available in the heart. The effect of nebivolol (0.1 nmol/l to 10 micromol/l) upon the developed peak tension was tested in endomyocardial biopsies from human nonrejecting transplanted hearts. Tension was recorded at steady state using a mechanoelectric force transducer. Nebivolol induced a concentration-dependent decrease in peak tension (maximum effect obtained at 10 micromol/l: -55 +/- 4%, n = 6), which was similar to that obtained with a preferential beta(3)-AR agonist, BRL 37344 (maximum effect obtained at 1 micromol/l: -45 +/- 2%, n = 12). The nebivolol effect was not modified by 10 micromol/l nadolol, a beta(1,2)-AR antagonist, but was significantly reduced in the presence of 1 micromol/l L-748,337, a selective beta(3)-AR antagonist, and after pre-treatment with 100 micromol/l N(G)-monomethyl-L-arginine, an NOS inhibitor. Our study demonstrated that nebivolol activated beta(3)-AR in the human ventricle. The NO-dependent negative inotropic effect of nebivolol associated with its vasodilating properties previously described in human microcoronary arteries could improve the energetic balance in heart. Those effects could explain the improvement of hemodynamic parameters obtained in patients with heart failure after nebivolol administration as previously described in clinical trials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.