Abstract
Abstract The lack of annotated datasets affects the development of Natural Language Processing applications and heavily impacts the access to textual data, in particular for specific domains and specific languages. In this paper, we propose a methodology to annotate texts concerning domain-specific knowledge, to provide a reliable source of data for the task of Named Entity Recognition (NER) in the domain of archaeology for the Italian laguage. This method integrates syntactic and semantic information from several structured sources to annotate entities’ mentions in unstructured texts. Furthermore, we make use of an ontology to label entities with the specific type they refer to. By using a corpus made up of item descriptions from Europeana’s Archaeology Collection, we first test our proposed methodology on a mock dataset composed of 1,000 texts. After several steps of improvements, we use the final process to create a complete dataset composed of 5,000 descriptions. The resulting dataset, Named Entities in Archaeological Texts has a total of 41,002 spans of texts annotated with their domain-specific entity classification according to the CIDOC Conceptual Reference Model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.