Abstract

Fault diagnostics involving the Internet-of-Things (IoT) sensors and edge devices is a challenging task due to their limited energy and computational capabilities. Another challenge concerning IoT sensors or devices is the incursion of noise when used in an industrial environment. The noisy samples affect the decision support system that could lead to financial and operational losses. This article proposes a noisy encoder using artificial intelligence of things (NEAT) architecture for fault diagnosis in IoT edge devices. NEAT combines autoencoders and Inception module to co-train the clean and noisy samples for solving the said problem. Experimental results on benchmark data sets reveal that the NEAT architecture is noise resilient in comparison to the existing works. Furthermore, we also show that the NEAT architecture has lightweight characteristics as it yields a lower number of parameters, weight storage, training, and testing times that support its real-life applicability in an Industrial IoT environment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.