Abstract

In this paper, a simulation model and practical testbed for green Internet of Things (IoT) edge devices are proposed based on solar harvester with constant voltage-maximum power point tracking (CV-MPPT) technique. Billions of connected edge devices represent the essential part of the IoT through the IP-enabled sensor networks based on IPv6 over Low power Wireless Personal Area Network (6LoWPAN). In traditional IoT edge devices, the stored energy in the non-rechargeable battery determines the node lifetime while it is being depleted with time. Therefore, purchasing billions of such batteries is costly and must be disposed of efficiently. This paper is aimed at simulating and implementing a new class of green IoT edge devices that can report data wirelessly and powered perpetually using clean energy. The developed edge device utilizes solar energy harvesting mechanism through photovoltaic (PV) module, this approach will avoid periodical battery replacement and hence, the energy supplied to the sensor mode is not limited anymore. The implemented testbed is based on open-source hardware and software platforms while the simulation environment is based on MATLAB/SIMULINK 2019a. The effects of temperature and solar irradiance on the performance of the developed approach are examined in order to confirm the leverage of the proposed methodology scheme. The lifetime of the developed green IoT device is predicted based on the device’s activities, current consumption, and energy storage capacity. The obtained results showed that the battery lifetime is extended by 38-49% when the edge device runs on an independent power source.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call