Abstract

An algorithm based on the radiance transfer model (MODTRAN4) and a dynamic learning neural network for estimation of near‐surface air temperature from ASTER data are developed in this paper. MODTRAN4 is used to simulate radiance transfer from the ground with different combinations of land surface temperature, near surface air temperature, emissivity and water vapour content. The dynamic learning neural network is used to estimate near surface air temperature. The analysis indicates that near surface air temperature cannot be directly and accurately estimated from thermal remote sensing data. If the land surface temperature and emissivity were made as prior knowledge, the mean and the standard deviation of estimation error are both about 1.0 K. The mean and the standard deviation of estimation error are about 2.0 K and 2.3 K, considering the estimation error of land surface temperature and emissivity. Finally, the comparison of estimation results with ground measurement data at meteorological stations indicates that the RM‐NN can be used to estimate near surface air temperature from ASTER data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.