Abstract
AbstractShore ice is an important facet of cold‐climate coastal geomorphology yet is generally understudied in comparison to other aspects such as nearshore hydrodynamics. Climate change is resulting in more dynamic shore ice regimes (i.e., shortened ice season and multiple freeze–thaw cycles); thus, a clear understanding of the role of shore ice in coastal geomorphic evolution is needed. The presence of shore ice is generally thought to provide the coast a protective buffer from storm waves though some studies have indicated enhanced nearshore erosion and sediment transport associated with ice development. This is particularly apparent during the breakup phase of shore ice as sediment can be scoured from the bed, deposited in place, or transported offshore. Given this, understanding the mechanics of shore ice breakup is critical. This study documents the first combined field and laboratory evaluation of the physical conditions leading to shore ice breakup, detailing the complex interplay between thermal and mechanical processes in ice deterioration. Through a wave tank experiment as well as field observations, wave impacts alone are shown to be unlikely to cause breakup of shore ice and thermal weakening is required. This has important implications both for predicting when ice will break up as well as for identifying potential nearshore sediment transport pathways. If ice breaks up entirely from thermal degradation, then sediment is likely to be deposited in place, whereas if ice breaks up from a combination of thermal degradation and wave impact, then sediment can be redistributed across the shoreface. Monitoring of meteorological conditions during ice breakup can likely be used as a first‐order predictor of geomorphic changes resulting from shore ice deterioration.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have