Abstract

The conventional approach of moving data to the CPU for computation has become a significant performance bottleneck for emerging scale-out data-intensive applications due to their limited data reuse. At the same time, the advancement in 3D integration technologies has made the decade-old concept of coupling compute units close to the memory — called near-memory computing (NMC) — more viable. Processing right at the “home” of data can significantly diminish the data movement problem of data-intensive applications.In this paper, we survey the prior art on NMC across various dimensions (architecture, applications, tools, etc.) and identify the key challenges and open issues with future research directions. We also provide a glimpse of our approach to near-memory computing that includes i) NMC specific microarchitecture independent application characterization ii) a compiler framework to offload the NMC kernels on our target NMC platform and iii) an analytical model to evaluate the potential of NMC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.