Abstract

AbstractWe improve to nearly optimal the known asymptotic and explicit bounds for the number of $\mathbb {F}_q$ -rational points on a geometrically irreducible hypersurface over a (large) finite field. The proof involves a Bertini-type probabilistic combinatorial technique. Namely, we slice the given hypersurface with a random plane.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.