Abstract
Tavorite-structured lithium transition metal fluorophosphates have been considered as a good alternative to olivine-type cathode for lithium-ion batteries due to its exceptional ionic conductivity and excellent thermal stability. In this work, nearly monodisperse LiFePO4F nanospheres with high purity are successfully synthesized by a solid-state route associated with chemically induced precipitation method for the first time. The synthesized LiFePO4F presents nearly monodisperse nanospheres particles with average particle size of ~ 500 nm. Cyclic voltammetry data exhibit a clear indication of the Fe3+/Fe2+ redox couple that involves a two-phase transition. Its electrochemical behaviors are examined by galvanostatic charge-discharge. The results show that the initial discharge capacity is 110.2 mAh g−1 at 0.5 C, after 200 cycles is still retained 104.0 mAh g−1 with the retention rate of 94.4%. The excellent cycle performance is mainly attributed to the uniform nanospheres-like morphology which is not only beneficial to shorten the transport distance of ions and electrons, but also improve the interface area between electrode and electrolyte, and thus improve the kinetics of Li ions.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have