Abstract
Defect engineering has been proven to be an effective approach for electronic structure modulation and plays an important role in the photocatalytic performance of nanomaterials. In this study, a series of CuS nanosheet sulfur vacancies (VS) are constructed by a simple hydrothermal synthesis method. The CuS with the highest VS concentration exhibits strong antibacterial performance, achieving bactericidal rates of 99.9% against the Gram-positive Bacillus subtilis and Gram-negative Escherichia coli bacteria under 808 nm laser irradiation. Under illumination, the temperature of the catalyst increases from 23.5 °C to 53.3 °C, and with a high photothermal conversion efficiency of 41.8%. For E. coli and B. subtilis, the reactive oxygen species (ROS) production that is induced by the CuS group is 8.6 and 9.6 times greater, respectively, than that of the control group. The presence of VS facilitates the enhancement of the light absorption capacity and the separation efficiency of electron-hole pairs, thereby resulting in improved photocatalytic performance. The synergistic effect of photothermal therapy (PTT) and photodynamic therapy (PDT) is aimed at causing oxidative damage and leading to bacterial death. Our findings provide an effective antibacterial strategy and offer new horizons for the application of CuS catalysts with VS in the NIR region.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.