Abstract

An effective calibration model of biodiesel fuel properties prediction, based on near-infrared (NIR) spectroscopy data and an artificial neural network (ANN), was built. Biodiesel samples were derived from multiple sources and prepared using multiple experimental parameters. Four different fuel properties, including fractional composition, were accurately predicted. The root-mean-square errors of prediction (RMSEPs) on an independent sample sets for the end boiling point (50% v/v), the end boiling point (90% v/v), the iodide value, and the cold filter plugging point were 1.73 °C, 1.78 °C, 0.90 g I2/100 g, and 0.77 °C, respectively. Multiple linear regression (MLR), principal component regression (PCR), partial least-squares (projection to latent structures, PLS) regression, (kernel) polynomial and spline versions of partial least-squares regression (Poly-PLS and Spline-PLS), and ANNs were compared for the prediction of biodiesel properties. Data preprocessing techniques and calibration model parameters we...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call