Abstract

Six popular approaches of «NIR spectrum–property» calibration model building are compared in this work on the basis of a gasoline spectral data. These approaches are: multiple linear regression (MLR), principal component regression (PCR), linear partial least squares regression (PLS), polynomial partial least squares regression (Poly-PLS), spline partial least squares regression (Spline-PLS) and artificial neural networks (ANN). The best preprocessing technique is found for each method. Optimal calibration parameters (number of principal components, ANN structure, etc.) are also found. Accuracy, computational complexity and application simplicity of different methods are compared on an example of prediction of six important gasoline properties (density and fractional composition). Errors of calibration using different approaches are found. An advantage of neural network approach to solution of «NIR spectrum–gasoline property» problem is illustrated. An effective model for gasoline properties prediction based on NIR data is built.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call