Abstract
Six popular approaches of «NIR spectrum–property» calibration model building are compared in this work on the basis of a gasoline spectral data. These approaches are: multiple linear regression (MLR), principal component regression (PCR), linear partial least squares regression (PLS), polynomial partial least squares regression (Poly-PLS), spline partial least squares regression (Spline-PLS) and artificial neural networks (ANN). The best preprocessing technique is found for each method. Optimal calibration parameters (number of principal components, ANN structure, etc.) are also found. Accuracy, computational complexity and application simplicity of different methods are compared on an example of prediction of six important gasoline properties (density and fractional composition). Errors of calibration using different approaches are found. An advantage of neural network approach to solution of «NIR spectrum–gasoline property» problem is illustrated. An effective model for gasoline properties prediction based on NIR data is built.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.