Abstract
The coupling of resonant modes between two surfaces is important in near-field heat transfer and near-field thermophotovoltaic (TPV) systems. Recently, coupled-mode theory (CMT) has been developed for the analysis and optimal design of TPV systems. We use CMT to analyze the “emitter-vacuum-PV cell” configuration and quantitatively show how the emitter of a nanostructure can drastically improve the near-field TPV device performance. The key feature of the nanostructure is the additional geometry-induced resonant mode, whose energy is lower than the original surface plasmon polariton resonant frequency and much closer to the bandgap of the PV cell. Specifically, we show that, with a simple grating structure, the generated power density of a TPV cell is increased from 13 to 34 W/cm2 when the PV cell is fixed at 300 K and the emitter is at 1000 K. The increase is over 20 times higher when both planar and grating emitters are at a lower temperature of 500 K.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have