Abstract
It is becoming increasingly clear that the way in which a conjugated polymer film is cast affects the interactions between polymer chains and thus the optical and electrical properties of the film. Given that conjugated polymer films cast in different ways also show different nanometer-scale surface topographies, the question that arises is: What is the correlation between surface topography, local chain packing, and the local electronic properties of a conjugated polymer film? In this paper, we address this question using fluorescence near-field scanning optical microscopy (NSOM) to examine films of poly(2-methoxy-5-(2‘-ethylhexyloxy)-1,4-phenylene vinylene) (MEH-PPV) that were prepared in different ways. The spatially resolved photoluminescence (SRPL) spectra collected on top of the nanometer-scale topographic features (“bumps”) exhibited by spin-cast MEH-PPV films show an enhancement of the red portion of the emission relative to spectra collected from flat regions of the film. Moreover, photooxidativ...
Submitted Version (
Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have