Abstract

Generating indistinguishable photons from independent nodes is an important challenge for the development of quantum networks. In this work, we demonstrate the generation of highly indistinguishable single photons from two dissimilar atomic quantum nodes. One node is based on a fully blockaded cold Rydberg ensemble and generates on-demand single photons. The other node is a quantum repeater node based on a Duan-Lukin-Cirac-Zoller quantum memory and emits heralded single photons after a controllable memory time that is used to synchronize the two sources. We demonstrate an indistinguishability of 94.6±5.2% for a temporal window including 90% of the photons. This advancement opens new possibilities for interconnecting quantum repeater and processing nodes with high-fidelity Bell state measurement without sacrificing its efficiency. Published by the American Physical Society 2024

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call