Abstract

For scalable quantum communication and networks, a key step is to realize a quantum repeater node that can efficiently connect different segments of atom-photon entanglement using quantum memories. We report a compact and hardware-efficient realization of a quantum repeater node using a single atomic ensemble for multicell quantum memories. A millisecond lifetime is achieved for individual memory cells after suppressing the magnetic-field-induced inhomogeneous broadening and the atomic-motion-induced spin-wave dephasing. Based on these long-lived memory cells, we achieve heralded asynchronous entanglement generation in two quantum repeater segments one after another and then an on-demand entanglement connection of these two repeater segments. As another application of the multicell atomic quantum memory, we further demonstrate storage and on-demand retrieval of heralded atomic spin-wave qubits by implementing a random access quantum memory with individual addressing capacity. This work provides a promising constituent for efficient realization of quantum repeaters for large-scale quantum networks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.