Abstract

When Ti-6Al-4V is processed by laser powder bed fusion (LPBF), a material with a martensitic microstructure is obtained. Moreover, the presence of internal stresses, an outer surface with relatively high surface roughness and the presence of remnant porosity all influence the fatigue life of high cyclically loaded components. The majority of investigations on LPBF produced Ti-6Al-4V have focussed on a fatigue life method providing valuable, albeit limited, insight into fatigue failure mechanisms. Near-threshold fatigue crack growth rates are vital for describing fatigue crack initiation mechanisms and how these are influenced by residual stress, a martensitic microstructure and build orientation. This study investigates near-threshold fatigue crack growth rates of LPBF produced Ti-6Al-4V. The study makes use of full-size compact tension specimens for fatigue crack growth rate investigations, the contour method for residual stress measurement, and scanning electron microscopy with electron backscatter diffraction to consider both morphological and crystallographic texture. Results show anisotropic near-threshold fatigue crack growth rates that are dependent on residual stress levels and load-ratios. Fracture is predominantly governed by transgranular quasi-cleavage mechanisms, and the fracture path is directed by the columnar prior beta-grain structure resulting in orientation-dependent crack closure effects. Residual stresses result in crack opening that causes a shift of near-threshold fatigue crack growth rates. An intrinsic ΔKth of ~1.6 ± 0.2 MPa√m and critical Kmax of ~ 3 MPa√m is measured that is independent of the stress state but dependent on orientation. It is shown that this anisotropy is linked to morphological texture and to a lesser extent the crystallographic texture of LBPF produced Ti-6Al-4V.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call