Abstract

ABSTRACT This 20-month study of a prairie hillslope seep system builds upon and extends the soil moisture record from a previous study conducted during the most extreme drought ever recorded in Texas. We seek to improve understanding of how prolonged drought impacts seep-headwater hydrology, and to determine how well dominant vegetation reflects changes in volumetric soil moisture (θv). Results show the entire hillslope saturates after storm events, but due to severe drought, no surface runoff or channel flow was recorded. We documented changes in soil moisture, with the highest θv occurring along the deeper footslope soils. We hypothesize hyperseasonal environments, or seasonal waterlogging/desiccation of upland vegetation in poorly drained soils, exist in the study area and are the first to quantify hyperseasonality, or % change in magnitude of θv throughout a hydrologic year. The seep and riparian plots aligned with lower hyperseasonality, indicating seasonal hypoxia, but not complete desiccation. High hyperseasonality occurred along the midslope barrens, indicative of a true hyperseasonal environment. We suggest a ≥ 90% threshold would likely indicate true hyperseasonal cyclicity of anaerobic and xeric regimes. Our results provide insight to how extreme drought impacts seep-headwater systems, and how predicted hotter, drier conditions may alter their hydrologic regime.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call