Abstract

It has become obvious in recent years that water is the most critical resource for Chinese agricultural ecosystems. Changes in agricultural water demands and soil moisture have significant implications for China’s water supply, the potential for drought and flood, and agricultural production. In the studies, we explored the changing trends in agricultural water demands, the changing trends and variability in soil moisture associated with both drought and increased surface runoff in Chinese croplands during the last half-century, and their impacts on agricultural production. We plotted temporal and spatial changes in agricultural water demands, soil moisture, soil-moisture variability, soil-moisture deficit, yield index, and surface runoff on a grid of 0.5° resolution. We found a trend toward agricultural water demands increasing, soil drying and significant changes in soil-moisture variability on the North China Plain and the Northeast China Plain. There was a significant decrease in agricultural water demands and a significant increase in soil-moisture levels in Southwest China, and a generally insignificant increase or decrease trend in agricultural water demands and soil-moisture levels in Southeast China. These changes in agricultural water demands and soil-moisture levels had corresponding impacts on soil-moisture deficit, and consequently on agricultural production. Increased surface runoff was found in the mountainous areas of the southwest and northeast, and in some areas along the South Coast.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call