Abstract

Climate change would have a major impact on the hydrological cycle and consequently on available water resources, the potential for flood and drought, and agricultural productivity. In this study, the impacts of climate change on the agricultural water cycle and their implications for agricultural production in the 2020s were assessed by water-balance calculations for Chinese croplands. Temporal and spatial changes in potential evapotranspiration, actual evapotranspiration, soil-moisture, soil-moisture deficit, yield index, and cropland surface runoff under the baseline climate and a HADCM2 general circulation model (GCM) climate-change scenario were mapped on a grid of 0.5° latitude/longitude resolution. According to the analysis, agricultural water demand in south China is projected to decrease generally, and the cropland soil-moisture deficit would decrease due to climate change. However, in north China, agricultural water demand is expected to increase, and the soil-moisture deficit would increase generally. The changes in the water resources would have consequent impacts on the yield index. Cropland surface runoff during the growing period is expected to increase on some sloping croplands in the southwest mountain areas and in some areas along the south coast. These changes would have important implications for agricultural production. Particularly the rain-fed crops in the north China plain and northeast China would face water-related challenges in coming decades due to the expected increases in water demands and soil-moisture deficit, and decreases in precipitation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call