Abstract

The study of the near-surface nanomechanical properties of thin films is a very ambitious task and can be accomplished by advanced surface sensitive techniques. Depth-sensing nanoindentation (NI) is a widely used technique for the nanomechanical characterization of thin films, but it has the inherent limitation of the substrate influence to the measured hardness ( H) and elastic modulus ( E). Thus, sophisticated modeling is required to determine H and E at the surface. On the other hand, surface acoustic methods seem more promising for such a study. Among them, atomic force acoustic microscopy (AFAM) is a scanning probe microscopy technique based on the resonant vibration of the AFM cantilever. In this work, we study the near-surface nanomechanical properties and the surface morphology of soft hydrogenated amorphous carbon (a-C:H) thin films. We use NI, employing the continuous stiffness measurements technique, and AFAM for the imaging of the variations of the surface mechanical properties and the accurate determination of the elastic modulus. We analyze NI data using empirical models in order to estimate near-surface E and H and the results are compared to those obtained by AFAM. From depth-sensing NI, it was found that the a-C:H thin films present “pop-in” events, which are eliminated by changing the deposition conditions e.g. increasing the negative bias voltage to the substrate ( V b). Near-surface H and E of the a-C:H thin films measured with nanoindentation were found to initially increase with increasing | V b |. Further increase of | V b| has no effect on the E and H values. Finally, by comparing the results from AFAM and NI, we conclude that the obtained values for E by NI are lower for all the a-C:H thin films.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.