Abstract

Near-surface vacancy-type defects have been studied by positron beam spectroscopy in three boron-doped Si wafers; a control sample, second sample exposed to atomic hydrogen in electron cyclotron resonance (ECR) plasma, and a third sample annealed at 500 °C following plasma treatment. From the analysis of the Doppler broadening spectra, measured as a function of positron implantation depth, we obtain positron diffusion lengths of about 100 and 250 nm for the damaged layer and bulk of the wafer, respectively. For the plasma-treated wafer, our measurements provide a defect density of about 5×1017 cm-3.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.