Abstract

ABSTRACTIt is known that zirconia has excellent thermal and chemical stability, and oxide ion conduction. Therefore, YSZ is expected to be used as oxide ion conducting materials, optical mirror materials, catalytic materials and heat-resistant materials. Zirconia films have been fabricated by PVD (ex. sputtering and laser-ablation), chemical vapor deposition (CVD) and sol-gel methods. CVD is capable to prepare high quality zirconia films with excellent conformal coverage; however, deposition temperature of conventional CVD was usually high than PVD. On the other hand, an electron cyclotron resonance (ECR) plasma is high-activity plasma and high quality crystalline films can be obtained at low temperature by using ECR plasma. In the present study, zirconia thin films were prepared at low temperatures on quartz, polycarbonate and polyimide substrates by ECR plasma MOCVD.Zr-hexafluoroacetylacetonato solution was used as a precursor. The source, which was placed in a glass bubbler, was carried into a reactor by Ar gas. A microwave (2.45 GHz, 500 W) was introduced into the ion chamber through a rectangular wave guide. A magnetic field (875 Gauss) was applied to the ion chamber to satisfy the ECR condition. A mirror-type magnetic field (450 Gauss at the substrate stage) was applied in order to raise a plasma density, which results in an increase of the deposition rates of films. Substrate temperature (Ts) was from 30 to 700 C by water-cooling holder and infrared lamp heater. Microwave power was changed from 0 to 900 W. The deposition time was from 30 to 120 minutes.Cubic, monoclinic and tetragonal zirconia films were obtained over Ts=400 C, and cubic and monoclinic zirconia films were obtained below Ts= C. Cubic and monoclinic zirconia films were also obtained at no heating. The deposition rate increased from 10 to 20 nm/min with increasing Ts from no heating to 600 C. Crystallized zirconia films were obtained on polycarbonate and polyimide substrates at no heating. The ECR plasma was significantly effective to prepare crystallized zirconia films at low temperatures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call